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Fig. 1 Functional ohjects a to ¢ and relationships with their genomic
footprints [ia) to i) A functionzl RNA molecule (e.g., a miENA)
with function Fet{a) is processed in two steps from an intronic
sequence. Iis image on the DNA is the genomic footprint ['a). The
genomic footprint I(B) of the functional protzin b is a discontinuous
stretch of DNA  corresponding o the coding sequence (CDS)
including the start codon but excluding the stop codon. The mBENA
includes UTEs that also map back to the DNA as well as parts without
footprints on the DNA (the 5'-cap and the poly-A tail). The functional
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proteins ¢ and o are olained by cleavage of the (non-functional)
precursor cd. The later is encoded by a trans-spliced mBNA. The
footprint Uic) is distributed over two DNA molecules. The primary
transcript ¢ has an additional function Fetle) that is independent of its
role as precursor of the mRNA of cd. As a consequence, ['(e) overlaps
with Both, i) and g, In 2l cases, the gene is the pair (T'(x),2)
composed of the genomic footprint I'(x) and the resulting functionzl
muolecule x



Although the gene has conventionally been viewed as the
fundamental unit of genomic organization, on the basis of
ENCODE data it is now compellingly argued that this unit is not
the gene but rather the transcript (Washietl et al. 2007; Djebali
et al. 2012a). On this view, genes represent a higher-order frame-
work around which individual transcripts coalesce, creating a poly-
functional entity that assumes different forms under different
cellular states, guided by differential utilization of regulatory DNA.

What does our genome encode?
John A. Stamatoyannopoulos

Genome Res. 2012 22: 1602-1611




Teza

Thesis. In order for a ‘gene’ to be a
‘gene’, to be a “higher-order poly-
functional entity” that takes on
different forms at different times,
it has to be more than an
invariant particle.




Pytanie

The question is: What evidence do we
have that such a thesis could be (at
least partly) correct?
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The First Clue




Principle 1: A typical (metazoan) “gene” consists of
interleaved, interspersed, multilevel, and
overlapping “data files.”
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Principle 2: This order permits a “gene” to be
formed into circuits differentially.
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Principle 3: Gene data files are clustered into

higher-order “folders” along a chromosome.

This arrangement enables different types of
RNAS to be encoded on both strands.
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Principle 4: Gene folders/ALUs are in turn arranged
into “superfolders.”
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Different “superfolders” encode different classes of
RNA outputs.
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And chromosome “superfolders” are in turn ordered
into banding patterns...
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...such as those of CpG islands.

Patterns in the genome

Wendy A. Bickmore ('

Heredity (2019) 123.50-57

Fig. 2 Fluorescence in situ
hybridisation (FISH) reveals the
distnbution of CpG slands
across the human genome. For
each metaphase chromosome,
the hybridisabon signal from
CpG islands (red) is shown on
the left of each pair. 4.6
Dhamidine-2-phenyl mdole
(DAPT)-stained chromosomes
are on the left. Late replhicating
(3-bands are shown in green.
Modified from Craig and
Bickmore (1994



As a consequence of these results, a
physical description of the “gene” is
currently lacking. What we do know is that
each DNA region:

- Is hierarchically ordered;

= Has “multilevel optimization” of
many different types of codes; and

- Is connected by “coding chains” with
“genes” on the same and other
chromosomes.
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The Second Clue




Other key pieces of evidence also began to
accumulate. For example, it was found that some
“genes” can potentially encode many different
transcripts (over 1,000,000 in one case!)
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And the splicing of RNASs generates yet
more “gene” products
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In addition, it was soon realized that the “junk”
sections of RNAs are processed into a host of
functional sequences
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k 1 Processing of exons /
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And now It is known that cellular pathways
literally rewrite genetic scripts to make new
transcripts and proteins, a widespread
phenomenon called “RNA editing”

Fig. 1, Lev-Maor, G. et
al., 2007. RNA-editing-
mediated exon

g0 evolution. Genome

Biology 8(2): R29.




L
Indeed, ribosomal and transfer RNAS

must be highly edited in order to become
functional in all known taxa

SECOND Bringing order to translation: the contributions
u c A G of transfer RNA anticodon-domain modifications
UUU Phe 3 UCU Ser  UAU Ty UGU Cys U p 0,
PAy) . UUC Phe& UCC Ser § UAC Tyr  UGC Cys €
u & S ; -
miG,,| Y UUA Leu  UCA Ser% UAA Stop UGA Stop A  EMBO reports VOL 9 | NO 7 | 2008 A
UUG Leu  UCG Ser  UAG Stop UGG Tp G e AS
CUU Leutw CCU Pro . CAU His .. CGU Arg U o8
mPAg, c CUC Leumr CCC Pro :33 CAC His = CGC Arg c W GC
miGy;| ™ CUA Leurw CCA Pro% CAA Gin't CGA Arg A 3 e
r CUG Leutw CCG Pro CAG GIn F cGa Arg G g GC TSL
= - A ——
i AUU lle ACU Thr ~ AAU Asn AGU Ser _ U 4 DSL gqt*Acu cClUa
#A,’|| AUC lle  ACC Thr 3 AAC Asn AGC Sers' € £ wls EEiZF
LA El . - clacuc®  SOCOGT C
meA;; | & AUA lle  ACA Thrp AAA Lys '3 AGA Ag§ A F Cu s
! n D S Gl s g G. GAGCAn~,~ MG
AUG Met  ACG Thr  AAG Lys * AGG A = @ GgA ¢:86G yL
moa, [ GUUVal _ GCU Ala _ GAU Asp GGU Gly U SL oG
1 GUC Val & GCC Ala 3 GAC Asp., GGC Gly © . A9t c.a
rr:QiZT G SUA val % GCA Ala Eg GAA Glup & GGA e@f A tRNA’s Wobble Decoding of the Genome: Cx ;%BA
7|l GUG Val © GCG Ala © GAG Glu™ GGG Gly G 40 Years of Modification U ) Cao.ciy
Paul F. Agris*, Franck A. P. Vendeix and William D. Graham cmo°U, oo
Fig 1| Universal genetic code. The 64 codes are associated with the transfer RNA J. Mol. Biol. (2007) 366, 1-13 -

(tRNA) modifications that are important for decoding and/or translocation. . .
Figure 2. tRNA primary sequence, secondary struc-

Twofold degenerate amino-acid codes are highlighted in grey and fourfold ture, and codon bmdm% The sequence and secondary

structure of E. coli tRNAY?L Ihe physical and functional
i domains of the E. coli 1[(\IA R, sequence and second-
highlighted in blue. The threefold degenerate codons of Ile are highlighted ary structure are the amino acid-accepting stem, AAS
fdark blue), the dihydrouridine stem and loop, DSL (red),
the anticodon stem and loop, ASL (green), the variable
The three stop codons are highlighted in orange. Nen-canonical codon use by loop, VL (gray), and the thymidine stem and loop, TSL
(purple). The modified nucleosides in this tRNA are: s U,
4- 1h1mlr1dme D, dihydrouridine; cmo LI uridine-5-oxya-
amino acids (blue) or translational stop codons (red). The modified nucleoside cetic acid; m®A, Né-methyladenosine; m’G, 7-methylgua-
nosine; ribothymidine, T; and paeudmmdme W, Because
of 1he wnbb]e nucleoside modification, cmo®Us,, E. coli
codons are denoted in white. In the mitochondrion, tRNAM® responds to AUG tRNAY ac is capable of decoding all of the fourfold

234
and AUA, which is not used as an [le codon (Agris et al, 2007; Szymanski & degenerate valinecodons. The tRNA isshown binding
S : the cognate codon for valine, GUA, in light blue.
Barciszewski, 2007; Bjork et al, 1987).
! |

degenerate codes are highlighted in tan. Amino acids with six codons are
in green, whereas the single codons of Met and Trp are highlighted in white.
some organisms and the mitochondrion is shown by using a small font for the

abbreviations are defined in the text, Selenocysteine (Sec) and pyrrolysine (Pyl)



Clearly, a “gene” provides the substrate for
many types of information that are layered on
by the cell. In fact...

- Many RNAs, because of being
rearranged and edited, do not mirror
any DNA sequence;

- The RNA-level codes that are formed
are ofien topological in nature; and

- Many RNA-level codes are sequence-
independent.




Wskazowka 3

The Third Clue




So-called junk DNA elements are replete with
experimentally demonstrated functions:

Highlights
¢ SINE, L1, and low-complexity repeats barcode genes with
distinct functions

¢ Genomic repeats dictate the time and level of gene
expression during development

¢ L1-enriched genes are sequestered in the inactive NAD/LAD
domains for silencing

¢ L1 BRNA promotes the nuclear localization and repression of
L1-enriched genes

Genomic Repeats Categorize Genes with Distinct
Functions for Orchestrated Regulation

J. Yuyang Lu, Wen Shao, Lei Chang, ...,
Miguel Ramalho-Santos, Yujie Sun,
Xiaohua Shen

Lu et al., 2020, Cell Reports 30, 3296-3311
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Gene function and transcription activity in ESCs Nuclear organization
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Proportional localization of
enriched TEs in enhancer domains
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_ | Enhancer | | Gene desert | o
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ar TF family logo e-value % e-value % in the consensus
ORR1
ETS ~aAGGAAGT 266-244 50% | 51e30  22% | CAGGAAGT(TIG)
(Etv-Ets-Gabpa)| ~cAGGAAG.-~ 2 56-62 49% | 51e77  27% | CAGGAAGT(TIG)
~ecACTTCCT. .. 4 50-28 46% | - - TTCCTCT
RUNX (1,2.3) ACCACA _ 3.00-64 16% | - - TGTGGTTT (AAACCACA)
Lin54 ATTCAAAc 4 fo-31 2T% | 47e-22 21% | TTTGAATG [CATTCAAA)
Max_Myc ~=aCTTGCTCee 6.3e-18 0% | 55211 14% | ACACTTGGT
MTD
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G- TCCTG0 o afc - . 5.8e-41 60% | 2.1e-30 57% | TTCCTGC
Runxi CCCACA 261 43% 1.5e-15 28% | CTGTGGG (CCCACAG)
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_ +CCCTTCec_. 1.3e-13 4a% | - - TCCCTTCCCC
sl K g2 | CCCetelece 4.8e-06 4% | - - ccceTeeee
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Tef7_Lefi ~-ACchAAA 5.8e-07 20% | - - AGACCAAC, TTTGGTCT
Tead3 _CATACE f.8e-00 /% | - - ACCATACC
MTE
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Frdm1_RelA GAAAGTC 2 Be 06 32% | - - GAAAGTC
Zfp523_Zfip143  _cTACAC . 0.5e-07 4% | - - ACTAAAACA
MLT
Rbpj TCCcCa 0.015 15% | - . TCCCCCCA
Sp1i2_, KIf —eacCTCOCCA 0.025 12% | - . coeTeee
Hic1 AaCCAcc 0.054 11% - - GCCACC
Forkhead, Znf224 _aAAATAAA- . 0.009 22% - - AAATARAAT




MIR
29787 ._oaGUABACTCAG . | ose2r  24% | s8eq3  13% | GGGCCTCAGTTTC
Zfp768 . ~CAGAGAGG 45e-20 18% | - . (GGAAACTGAG)
Thp cATTTTAcA 1.7e-15 16% | - - GTAAAATG (CATTTTAC)
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And many taxon-specific repeats have almost
“synonymous” chromosomal locations:




Alu and B1 Repeats Have Been Selectively Retained in
the Upstream and Intronic Regions of Genes of Specific
Functional Classes

Aristotelis Tsirigos®, Isidore Rigoutsos®
PLoS5 Computational Biology
December 2009 | Volume 5 | Issue 12 | e1000610
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Figure 1. Alu densities upstream and downstream of known genes as a function of distance from the gene transcript start position.
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Figure 2. B element (B1, B2, B4) densities upstream and downstream of known genes as a function of distance from the gene

transcript start position. Green and red curves correspond to B element instances in the sense and antisense orientation respectively.




Transposable elements contribute to cell and
species-specific chromatin looping and gene
regulation in mammalian genomes
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The overall “data” pattern along a
megafolder Is the same but the species-specific
details of the logic gates are different.
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Wskazowka 4

The Fourth Clue
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ridge regulates opportunities for chromatin crosstalk. The relative positions of
The Three-Dimensional Structure of Human Interphase Chromosomes chromosomes in an lnterphasc nucleus dcpend on the pl’OpOl'thll Ofgenes

Is Related to the Transcrlptome Map”
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and the A+T content. The opportunities for chromatin crosstalk between

Chromosome crosstalk in three dimensions
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And these are in turn organized into “topologically-
associating domains” that are cell-specific.
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Interactions

Chromosomal territories and compartments are very stable within one cell

cycle of a given cell, but they are unlikely to be reproduced from one cell cycle Johan H. Gibcus! and Job Dekker':”

to the next. Conversely, interactions between loops (within TADs) wil be Molecular Cell 49, March 7, 2013
unstable and variable within each cell cycle, but this “instability” is repro-

ducible from one cell cycle to the next. At the junction between stability and

repreducibility, TADs confine looping, while maintaining the possibilty of

compartmentalization.




Acregulatory switch between two adjacent TADs underhes the bimodal regulation occurring at the Hox locus during limb development.
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Nuclear Architecture of Rod
Photoreceptor Cells Adapts to Vision |
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DNA Sequences as Context-
Dependent, Data-Storage Regions

Given all the evidence we now have available, a
new model of “genes” is now emerging...




An estimated 13.7 somatic L1 insertions occur per
hippocampal neuron, on average

Target-primed reverse transcription drives somatic L1

| retrotransposition

Somatic L1 insertions sense oriented to introns are depleted
in neurons and glia

Hippocampus genes and enhancers are strikingly enriched
for somatic L1 insertions

In Brief

Somatic genome mosaicism among
neurons has the potential to impact brain
function. L1 retrotransposons mobilize

' extensively in hippocampal neurons,

preferentially in hippocampally
expressed loci, and are depleted from
mature neurons when oriented in the
most deleterious configuration to host
genes, suggesting functional
significance.

Ubiquitous L1 Mosaicism in Hippocampal Neurons

Kyle R. Upton,'® Daniel J. Gerhardt,'€ J. Samuel Jesuadian,' Sandra R. Richardson,' Francisco J. Sanchez-Luque,’
Gabriela O. Bodea,! Adam D. Ewing,' Carmen Salvador-Palomeque,’ Marjo S. van der Knaap,? Paul M. Brennan,®

Adeline Vanderver,* and Geoffrey J. Faulkner':5~
Cell 161, 228-239, April 9, 2015




...and it is one where we have to
attribute the “informing” principle
to something other than DNA.




The epigenome and top-down
causation

P. C. W. Davies®

Interface Foeus (2012) 2, 42-48
doi:10.1098 /rafs. 201 1.0070




THE EPIGENOME AS AVIRTUAL
OBJECT

.. we will look in vain for any
particular physical object within the cell that we can
identify as ‘the epigenome.” In the case of epigenetics,
there is no physical headguarters, no localized com-
manding officers issuing orders, no geographical nerve
centre where the epigenomic ‘programme’ is stored
and from where epigenomic instructions emanate to
help run the cell. The epigenome is not to be found at
a place and the ultimate information source of epige-
netics cannot be located anvwhere specificallv: rather,
it is distributed throughout the cell. To be sure, the epi-
genome 1 manifested in particular structures (histone
tails, nucleosome patterns, methvlation patterns, chro-
matin packing ... ), but it does not originate there.
The epigenome is evervwhere and nowhere; it is a
global, svstemic entitv. Expressed more starkly, the epi-
genome is a virtual object. Given that it calls many, if
not most, of the biological shots, its non-existence as
a specific phvsical entity is deeply significant.
... Undeniably the genome provides the

words., but the epigenome writes the play! For those
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